THE SCHWARZIAN DERIVATIVE

KEATON QUINN

If we identify $\mathbb{C} P^{1}$ with the Riemann sphere, then in a coordinate z, the action of $\mathrm{SL}_{2} \mathbb{C}$ on $\mathbb{C P}^{1}$ is given by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z=\frac{a z+b}{c z+d}
$$

But notice that $M \cdot z=(-M) \cdot z$. So to get a faithful action we quotient by the normal subgroup $\{ \pm I d\}$, obtaining the group $\mathrm{PSL}_{2} \mathbb{C}=\mathrm{SL}_{2} \mathbb{C} /\{ \pm I d\}$.
Lemma. Suppose Ω is an open connected subset of $\mathbb{C P}^{1}$ and $f: \Omega \rightarrow \mathbb{C P}^{1}$ is a locally injective holomorphic function. Given $z \in \Omega$, there exists a unique Möbius transformation $M_{f}(z) \in \mathrm{PSL}_{2} \mathbb{C}$ that agrees with f at z to $2 n d$ order, i.e.,

$$
f(w)=M_{f}(z) \cdot w+o(w-z)^{2}
$$

Another way to say this is that for fixed $z \in \Omega$,

$$
\begin{aligned}
M_{f}(z) \cdot z & =f(z) \\
\left.\frac{d}{d w}\left(M_{f}(z) \cdot w\right)\right|_{w=z} & =f^{\prime}(z) \\
\left.\frac{d^{2}}{d w^{2}}\left(M_{f}(z) \cdot w\right)\right|_{w=z} & =f^{\prime \prime}(z)
\end{aligned}
$$

The assignment $z \mapsto M_{f}(z)$ defines a map $M_{f}: \Omega \rightarrow \mathrm{PSL}_{2} \mathbb{C}$ that is called the Osculating Möbius Transformation of f. If neither z nor $f(z)$ is infinity, then the osculating Möbius transformation is given by

$$
M_{f}(z) \cdot w=\frac{\left(f^{\prime}(z)^{2}-\frac{1}{2} f(z) f^{\prime \prime}(z)\right)(w-z)+f(z) f^{\prime}(z)}{-\frac{1}{2} f^{\prime \prime}(z)(w-z)+f^{\prime}(z)}
$$

so that

$$
M_{f}(z)=\frac{1}{f^{\prime}(z)^{3 / 2}}\left(\begin{array}{cc}
f^{\prime}(z)^{2}-\frac{1}{2} f(z) f^{\prime \prime}(z) & -\left(f^{\prime}(z)^{2}-\frac{1}{2} f(z) f^{\prime \prime}(z)\right) z+f(z) f^{\prime}(z) \\
-\frac{1}{2} f^{\prime \prime}(z) & f^{\prime}(z)+\frac{1}{2} z f^{\prime \prime}(z)
\end{array}\right)
$$

Note that the ambiguity of the $f^{\prime}(z)^{3 / 2}$ is taken care of by the quotient to $\mathrm{PSL}_{2} \mathbb{C}$.
If f is already a Möbius transformation then $M_{f}(z)=f$ for all $z \in \Omega$. Indeed, $M_{f}: \Omega \rightarrow \mathrm{PSL}_{2} \mathbb{C}$ is constant if and only if f is a Möbius transformation. Therefore, the derivative of the osculating Möbius transformation should give some measure of how far the function f is from being a Möbius transformation.

The differential $d M_{f}: T \Omega \rightarrow T \mathrm{PSL}_{2} \mathbb{C}$ takes values in the tangent bundle of $\mathrm{PSL}_{2} \mathbb{C}$. The tangent bundle of a Lie group is canonically trivialized by left translation:

$$
\begin{aligned}
T \mathrm{PSL}_{2} \mathbb{C} & \simeq \mathrm{PSL}_{2} \mathbb{C} \times \operatorname{Lie}\left(\mathrm{PSL}_{2} \mathbb{C}\right)=\mathrm{PSL}_{2} \mathbb{C} \times \mathfrak{s l}_{2} \mathbb{C} \\
(M, v) & \mapsto\left(M, d\left(L_{M^{-1}}\right)_{M}(v)\right)=\left(M, M^{-1} v\right)
\end{aligned}
$$

[^0]So composing $d M_{f}$ with the projection to $\mathfrak{s l}_{2} \mathbb{C}$ we can consider the Darboux derivative of f : a 1 -form on Ω with values in $\mathfrak{s l}_{2} \mathbb{C}$. See [Sha97, Chapter 3] for a discussion of Darboux derivatives. An explicit computation gives

$$
M_{f}(z)^{-1} d\left(M_{f}\right)_{z}=\frac{1}{2}\left(\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\prime}-\frac{1}{2}\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{2}\right)\left(\begin{array}{cc}
-z & z^{2} \\
-1 & z
\end{array}\right) d z
$$

So we see that Darboux derivative is zero precisely when the quantity

$$
S(f)(z)=\left(\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\prime}-\frac{1}{2}\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{2}\right)=0
$$

and so f is a Möbius transformation precisely when $S(f)=0$. We call $S(f)$ the Schwarzian derivative of f.

The Schwarzian derivative has an interesting chain rule: if f and g are locally injective and holomorphic then a computation shows

$$
S(f \circ g)=(S(f) \circ g)\left(g^{\prime}\right)^{2}+S(g)
$$

This suggests that the Schwarzian is more naturally a quadratic differential; that we should redefine

$$
S(f)(z)=\left(\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\prime}-\frac{1}{2}\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{2}\right) d z^{2}
$$

so that the chain rule can be written more cleanly as

$$
S(f \circ g)=g^{*} S(f)+S(g)
$$

However, this new definition is not well behaved under a change of coordinates. Say we have a Riemann surface X and a holomorphic map $f: X \rightarrow \mathbb{C}$. We could try to define the Schwarzian of f in charts and pull it back to X. That is, suppose $z: U \rightarrow \mathbb{C}$ is a coordinate chart, we could try to define $S(f)$ on U by $z^{*} S\left(f \circ z^{-1}\right)$. To check if this can be globally defined, take another chart w overlapping with z. Then we have

$$
\begin{aligned}
z^{*} S\left(f \circ z^{-1}\right) & =z^{*} S\left(f \circ w^{-1} \circ\left(w \circ z^{-1}\right)\right) \\
& =z^{*}\left(\left(w \circ z^{-1}\right)^{*} S\left(f \circ w^{-1}\right)+S\left(w \circ z^{-1}\right)\right) \\
& =w^{*} S\left(f \circ w^{-1}\right)+z^{*} S\left(w \circ z^{-1}\right) .
\end{aligned}
$$

So we see we can only patch together the Schwarzian if $S\left(w \circ z^{-1}\right)=0$ for all holomorphic charts on X. That is, only when all the transition functions are Möbius transformations. This leads us to the definition of a Complex Projective Structure.

Definition. Let S be a smooth surface. A complex projective structure Z on S is an atlas of charts to $\mathbb{C} P^{1}$ such that all the transition functions are (the restrictions of) Möbius transformations. We refer to S with Z as a complex projective surface.

Notice that since Möbius transformations are holomorphic, a complex projective structure Z induces a complex structure X on S. Like in the smooth manifolds case, we call a function between two complex projective surfaces $f: Z \rightarrow W$ projective if it is (the restriction of) Möbius transformations in all projective charts of Z and W. Again, since Möbius transformations are holomorphic, projective maps between
complex projective surfaces are holomorphic with respect to the underlying complex structures.

Suppose $f: Z \rightarrow W$. We can define the Schwarzian derivative of f as a quadratic differential on Z. If f is locally injective, then $f^{\prime}(z) \neq 0$ for any z and so the Schwarzian of f is holomorphic with respect to Z 's underlying complex structure. If f is not locally injective, then we have $f^{\prime}(z)=0$ somewhere, in which case the Schwarzian is a meromorphic quadratic differential. Now, to define the Schwarzian, take projective charts z for Z and w for W and locally define it by $z^{*} S\left(w \circ f \circ z^{-1}\right)$. Like before, one can check that these local tensors patch together to give a global object on Z. We also still have that f is projective if and only if $S(f)=0$.

Now let X be a Riemann surface and let $\mathcal{P}(X)$ be the set of all complex projective structures that have underlying complex structure X (up to isotopy). We can use the Schwarzian derivative to measure the 'difference between $Z, W \in \mathcal{P}(X)$. To do this, note that the identity is a map $I d: Z \rightarrow W$ and define

$$
Z-W=S(I d) \in Q(X)
$$

This is actually a good measure of the difference because in charts we have $S(I d)=$ $z^{*} S\left(w \circ z^{-1}\right)$. So $S(I d)$ is measuring the projective compatibility between the projective atlas for Z and the projective atlas for W. If we fix a basepoint $Z_{0} \in \mathcal{P}(X)$, we can define an isomorphism $\mathcal{P}(X) \rightarrow Q(X)$ by sending $Z \mapsto Z-Z_{0}$. Hence $\mathcal{P}(X)$ is an affine space modeled on the vector space $Q(X)$.

The viewpoint taken here is due to Thurston (see [Thu86]). See also [And98] and [Dum09] for further discussion.

References

[And98] Charles Gregory Anderson, Projective structures on Riemann surfaces and developing maps to \mathbb{H}^{3} and $\mathbb{C P}^{n}$, ProQuest LLC, Ann Arbor, MI, 1998, Thesis (Ph.D.)-University of California, Berkeley.
[Dum09] David Dumas, Complex projective structures, Handbook of Teichmüller theory. Vol. II, IRMA Lect. Math. Theor. Phys., vol. 13, Eur. Math. Soc., Zürich, 2009, pp. 455-508.
[Sha97] R. W. Sharpe, Differential geometry, Graduate Texts in Mathematics, vol. 166, SpringerVerlag, New York, 1997, Cartan's generalization of Klein's Erlangen program, With a foreword by S. S. Chern.
[Thu86] William P. Thurston, Zippers and univalent functions, The Bieberbach conjecture (West Lafayette, Ind., 1985), Math. Surveys Monogr., vol. 21, Amer. Math. Soc., Providence, RI, 1986, pp. 185-197.

[^0]: Date: Last Revised: December 9, 2019.

